Senin, 15 Oktober 2012
Aljabar linear
Persamaan Linear & Matriks
Persamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan:
3x1 + 4x2 − 2 x3 = 5
x1 − 5x2 + 2x3 = 7
2x1 + x2 − 3x3 = 9
dapat dinyatakan dalam matriks teraugmentasi sebagai berikut
Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.
Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :
a11x1 + a12x2 + ... + a1nxn = 0
a21x1 + a22x2 + ... + a2nxn = 0
am1x1 + am2x2 + ... + amnxn = 0
Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x1 = 0 , x2 = 0 , ... , xn = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial.
[sunting]Penyelesaian Persamaan Linear dengan Matriks
[sunting]Bentuk Eselon-baris
Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :
1.) Di setiap baris, angka pertama selain 0 harus 1 (leading 1).
2.) Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.
3.) Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.
4.) Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Eselon-baris tereduksi
Contoh: syarat 1: baris pertama disebut dengan leading 1
syarat 2: baris ke-3 dan ke-4 memenuhi syarat 2
syarat 3: baris pertama dan ke-2 memenuhi syarat 3
syarat 4: matriks dibawah ini memenuhi syarat ke 4 dan disebut Eselon-baris tereduksi
[sunting]Operasi Eliminasi Gauss
Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.
Contoh: Diketahui persamaan linear
Tentukan Nilai x, y dan z
Jawab:
Bentuk persamaan tersebut ke dalam matriks:
Operasikan Matriks tersebut
B1 x 1 ,. Untuk merubah a11 menjadi 1
B2 - 1.B1 ,. Untuk merubah a21 menjadi 0
B3 - 2.B1 ,. Untuk merubah a31 menjadi 0
B2 x 1 ,. Untuk merubah a22 menjadi 1
B3 + 3.B2 ,. Untuk merubah a32 menjadi 0
B3 x 1/3 ,. Untuk merubah a33 menjadi 1 (Matriks menjadi Eselon-baris)
Maka mendapatkan 3 persamaan linier baru yaitu
Kemudian lakukan substitusi balik maka didapatkan:
Jadi nilai dari , ,dan
[sunting]Operasi Eliminasi Gauss-Jordan
Eliminasi Gauss-Jordan adalah pengembangan dari eliminasi Gauss yang hasilnya lebih sederhana. Caranya adalah dengan meneruskan operasi baris dari eliminasi Gauss sehingga menghasilkan matriks yang Eselon-baris tereduksi. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris tereduksi, maka langsung dapat ditentukan nilai dari variabel-variabelnya tanpa substitusi balik.
Contoh: Diketahui persamaan linear
Tentukan Nilai x, y dan z
Jawab:
Bentuk persamaan tersebut ke dalam matriks:
Operasikan Matriks tersebut
Baris ke 2 dikurangi 2 kali baris ke 1
Baris ke 3 dikurangi 2 kali baris ke 1
Baris ke 3 dikurangi 3 kali baris ke 2
Baris ke 3 dibagi 8 dan baris ke 2 dibagi -1
Baris ke 2 dikurangi 4 kali baris ke 3
Baris ke 1 dikurangi 3 kali baris ke 3
Baris ke 1 dikurangi 2 kali baris ke 2 (Matriks menjadi Eselon-baris tereduksi)
Maka didapatkan nilai dari , ,dan
[sunting]Operasi Dalam Matriks
Dua buah matriks dikatakan sama apabila matriks-matriks tersebut mempunyai ordo yang sama dan setiap elemen yang seletak sama.
Jika A dan B adalah matriks yang mempunyai ordo sama, maka penjumlahan dari A + B adalah matriks hasil dari penjumlahan elemen A dan B yang seletak. Begitu pula dengan hasil selisihnya. Matriks yang mempunyai ordo berbeda tidak dapat dijumlahkan atau dikurangkan.
Jumlah dari k buah matriks A adalah suatu matriks yang berordo sama dengan A dan besar tiap elemennya adalah k kali elemen A yang seletak. Didefinisikan: Jika k sebarang skalar maka kA = A k adalah matriks yang diperoleh dari A dengan cara mengalikan setiap elemennya dengan k. Negatif dari A atau -A adalah matriks yang diperoleh dari A dengan cara mengalikan semua elemennya dengan -1. Untuk setiap A berlaku A + (-A) = 0. Hukum yang berlaku dalam penjumlahan dan pengurangan matriks :
a.) A + B = B + A
b.) A + ( B + C ) = ( A + B ) + C
c.) k ( A + B ) = kA + kB = ( A + B ) k , k = skalar
Hasil kali matriks A yang ber-ordo m x p dengan matriks B yang berordo p x n dapat dituliskan sebagi matriks C = [ cij ] berordo m x n dimana cij = ai1 b1j + ai2 b2j + ... + aip bpj
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar