Jumat, 18 Januari 2013

carlos tevez

gerard bale

gerard bale

ezequiel lavezzi

theo walcott

juan mata

demba ba

fernando torres

carles puyol

sergio busquet

andres iniesta

xavi hernandez

pepe reina

fabio borini

Luis Suarez

skrtel

sebastian coates

downing

Neymar Da Silva

Daniel agger

joe allen

steven gerrard

daniel sturridge

raheem sterling

chicharito hernandez

Foto-Chicharito-Hernandez

ROBIN VAN PERSIE STRIKER TERBAIK



Nama lengkap Robin van Persie[1]
Tanggal lahir 6 Agustus 1983 (umur 29)
Tempat lahir Rotterdam, Belanda
Tinggi 1.83 m (6 ft 0 in)[2]
Posisi bermain Penyerang
Gelandang sayap
Informasi klub
Klub saat ini Manchester United
Nomor 20
Karier junior
1998–1999 Excelsior
1999–2001 Feyenoord
Karier senior*
Tahun Tim Tampil (Gol)
2001–2004 Feyenoord 61 (15)
2004–2012 Arsenal 194 (96)
2012- Manchester United 19 (16)
Tim nasional‡
2000 Belanda U-17 6 (0)
2001 Belanda U-19 6 (0)
2002–2005 Belanda U-21 12 (1)
2005– Belanda 71 (31)
* Penampilan dan gol di klub senior hanya dihitung dari liga domestik dan akurat per 17:51, 26 Desember 2012 (UTC).

‡ Penampilan dan gol di tim nasional
akurat per 21:51, 16 Oktober 2012 (UTC)
Robin van Persie (lahir di Rotterdam, Belanda, 6 Agustus 1983; umur 29 tahun) adalah pemain sepak bola Belanda yang bermain sebagai striker untuk Manchester United dan tim nasional Belanda. Dia adalah produk muda Feyenoord.[3] Setelah bergabung dengan Arsenal pada tahun 2004, Van Persie menjadi kapten klub pada 16 Agustus 2011.[4] bermain gaya dan kemampuannya telah menarik dan dibandingkan dengan legenda Belanda Marco van Basten.[5]

Putra dari dua seniman, Van Persie didorong untuk mengikuti jejak orang tuanya,[6] tapi dia malah lebih suka sepak bola dan bergabung dengan skuad muda SBV Excelsior. Dia membuat terobosan di klub kota kelahirannya Feyenoord lain, di mana ia menghabiskan tiga musim dan memenangkan Piala UEFA tahun 2002.[7] Dia menyabet gelar Dutch Football Talent of the Year untuk musim 2001-02. Ketidaksepakatan dengan manajer Bert van Marwijk memuncak dalam perubahan klub dan Van Persie pindah ke klub Liga Premier Arsenal dengan nilai transfer £ 2.750.000 pada tahun 2004 sebagai pengganti jangka panjang untuk Dennis Bergkamp. Ia memenangkan FA Community Shield dan Piala FA di musim pertamanya dengan klub London dan pergi untuk memenangkan 2006 Rotterdam Sportsman of the year. Van Persie menjadi topskor dan assist terbanyak dalam musim 2008-2009.

ROBIN VAN PERSIE STRIKER TERBAIK



Nama lengkap Robin van Persie[1]
Tanggal lahir 6 Agustus 1983 (umur 29)
Tempat lahir Rotterdam, Belanda
Tinggi 1.83 m (6 ft 0 in)[2]
Posisi bermain Penyerang
Gelandang sayap
Informasi klub
Klub saat ini Manchester United
Nomor 20
Karier junior
1998–1999 Excelsior
1999–2001 Feyenoord
Karier senior*
Tahun Tim Tampil (Gol)
2001–2004 Feyenoord 61 (15)
2004–2012 Arsenal 194 (96)
2012- Manchester United 19 (16)
Tim nasional‡
2000 Belanda U-17 6 (0)
2001 Belanda U-19 6 (0)
2002–2005 Belanda U-21 12 (1)
2005– Belanda 71 (31)
* Penampilan dan gol di klub senior hanya dihitung dari liga domestik dan akurat per 17:51, 26 Desember 2012 (UTC).

‡ Penampilan dan gol di tim nasional
akurat per 21:51, 16 Oktober 2012 (UTC)
Robin van Persie (lahir di Rotterdam, Belanda, 6 Agustus 1983; umur 29 tahun) adalah pemain sepak bola Belanda yang bermain sebagai striker untuk Manchester United dan tim nasional Belanda. Dia adalah produk muda Feyenoord.[3] Setelah bergabung dengan Arsenal pada tahun 2004, Van Persie menjadi kapten klub pada 16 Agustus 2011.[4] bermain gaya dan kemampuannya telah menarik dan dibandingkan dengan legenda Belanda Marco van Basten.[5]

Putra dari dua seniman, Van Persie didorong untuk mengikuti jejak orang tuanya,[6] tapi dia malah lebih suka sepak bola dan bergabung dengan skuad muda SBV Excelsior. Dia membuat terobosan di klub kota kelahirannya Feyenoord lain, di mana ia menghabiskan tiga musim dan memenangkan Piala UEFA tahun 2002.[7] Dia menyabet gelar Dutch Football Talent of the Year untuk musim 2001-02. Ketidaksepakatan dengan manajer Bert van Marwijk memuncak dalam perubahan klub dan Van Persie pindah ke klub Liga Premier Arsenal dengan nilai transfer £ 2.750.000 pada tahun 2004 sebagai pengganti jangka panjang untuk Dennis Bergkamp. Ia memenangkan FA Community Shield dan Piala FA di musim pertamanya dengan klub London dan pergi untuk memenangkan 2006 Rotterdam Sportsman of the year. Van Persie menjadi topskor dan assist terbanyak dalam musim 2008-2009.

Sabtu, 12 Januari 2013

mitokondria


Mitokondria adalah badan energi sel yang berisi protein dan benar-benar merupakan "gardu tenaga". "Gardu tenaga" ini mengoksidasi makanan dan mengubah energi menjadi adenosin trifosfat atau ATP. ATP menjadi agen dalam berbagai reaksi termasuk sistesis enzim. Mitokondria penuh selaput dalam yang tersusun seperti akordion dan meluaskan permukaan tempat terjadinya reaksi. (Sumber: Time Life, 1984)

Wikipedia Indonesia, (ensiklopedia bebas berbahasa Indonesia; diakses pada 22 Agustus 2007) memberi pengertian mitokondria sebagai tempat di mana fungsi respirasi pada makhluk hidup berlangsung. Respirasi merupakan proses perombakan atau katabolisme untuk menghasilkan energi atau tenaga bagi berlangsungnya proses hidup. Dengan demikian, mitokondria adalah "pembangkit tenaga" bagi sel. Oleh karena itu mito kondria sering disebut sebagai “The Power House”.

Mitokondria merupakan penghasil (ATP) karena berfungsi untuk respirasi. Bentuk mitokondria beraneka ragam, ada yang bulat, oval, silindris, seperti gada, seperti raket dan ada pula yang tidak beraturan. Namun secara umum dpat dikatakan bahwa mitokondria berbentuk butiran atau benang. Mitokondria mempunyai sifat plastis, artinya bentuknya mudah berubah. Ukuran seperti bakteri dengan diameter 0,5 – 1 µm. Mitokondria baru terbentuk dari pertumbuhan serta pembelahan mitokondria yang telah ada sebelumnya (seperti pembelahan bakteri). Penyebaran dan jumlah mitokondria di dalam tiap sel tidak sama dari hanya satu hingga beberapa ribu. Pada sel sperma, mitokondria tampak berderet-deret pada bagian ekor yang digunakan untuk bergerak.



Gbr. Mitokondria






Studi Kasus:Keterlibatan Mitokondria pada Penyakit Hati

SUARA PEMBARUAN DAILY - Kehidupan dan kematian merupakan dua hal yang selalu terjadi pada setiap sel. Pada kedua hal itu, mitokondria terlibat aktif dan memiliki fungsi yang penting. Untuk kehidupan sel, mitokondria berperan menghasilkan energi yang digunakan untuk melakukan berbagai fungsi sel.

Semua jaringan dan sel yang hidup dengan berbagai derajat yang berbeda menurut fungsi masing-masing memerlukan energi dalam bentuk ATP yang dihasilkan mitokondria melalui proses fosforilasi oksidatif. Disfungsi mitokondria dapat terjadi pada semua sistem organ, maka manifestasi klinik kelainan mitokondria dapat bervariasi menurut organ yang terlibat. Gangguan ini bisa berupa gangguan fungsi sampai kerusakan sistem organ. Hal itu disampaikan oleh dr David Handojo Muljono dari Lembaga Biologi Molekuler Eijkman Jakarta dalam suatu seminar tentang Mitokondria.

Dengan berkembangnya imunologi, diketahui bahwa kerusakan hati pada primary biliary cirrhosis (PBC) terjadi karena kerusakan mitokondria akibat antibodi terhadap protein mitokondria. Selanjutnya terungkap bahwa penyakit hati yang disebabkan oleh penimbunan lemak, terjadi melalui kerusakan mitokondria sel hati.

Kelainan mitokondria ini terjadi sebagai akibat peningkatan sintesis asam lemak yang diikuti mekanisme kompensasi sel berupa fat disposal melalui esterifikasi lemak menjadi trigliserida dan oksidasi di tiga organel sel yakni mitokondria, peroksisom dan mikrosom. Kelainan pada mitokondria itu juga terjadi karena pembentukan bahan-bahan yang bersifat toksik terhadap berbagai protein respirasi, fosfolipid dan DNA mitokondria.

Selain akibat penimbunan lemak, kelainan mitokondria pada penyakit hati juga diakibatkan pengaruh obat. Obat merupakan bahan kimia yang bekerja dengan berbagai cara yakni langsung pada reseptor, memodulasi enzim atau berikatan dengan protein sel untuk menimbulkan efek baru. Di lain pihak, hati merupakan organ yang bertugas menetrasisasi bahan-bahan toksik yang memasuki tubuh.

Kegagalan suatu sistem akan menyebabkan akumulasi bahan tertentu yang akan merupakan bahan toksis untuk enzim pada organel tertentu atau pada organel berikutnya.

SEL


Dalam biologi, sel adalah kumpulan materi paling sederhana yang dapat hidup dan merupakan unit penyusun semua makhluk hidup Sel mampu melakukan semua aktivitas kehidupan dan sebagian besar reaksi kimia untuk mempertahankan kehidupan berlangsung di dalam sel. Kebanyakan makhluk hidup tersusun atas sel tunggal,atau disebut organisme uniseluler, misalnya bakteri dan ameba. Makhluk hidup lainnya, termasuk tumbuhan, hewan, dan manusia, merupakan organisme multiseluler yang terdiri dari banyak tipe sel terspesialisasi dengan fungsinya masing-masing. Tubuh manusia, misalnya, tersusun atas lebih dari 1013 sel. Namun demikian, seluruh tubuh semua organisme berasal dari hasil pembelahan satu sel. Contohnya, tubuh bakteri berasal dari pembelahan sel bakteri induknya, sementara tubuh tikus berasal dari pembelahan sel telur induknya yang sudah dibuahi.
Sel-sel pada organisme multiseluler tidak akan bertahan lama jika masing-masing berdiri sendiri. Sel yang sama dikelompokkan menjadi jaringan, yang membangun organ dan kemudian sistem organ yang membentuk tubuh organisme tersebut. Contohnya, sel otot jantung membentuk jaringan otot jantung pada organ jantung yang merupakan bagian dari sistem organ peredaran darah pada tubuh manusia. Sementara itu, sel sendiri tersusun atas komponen-komponen yang disebut organel.
Sel terkecil yang dikenal manusia ialah bakteri Mycoplasma dengan diameter 0,0001 sampai 0,001 mm,]sedangkan salah satu sel tunggal yang bisa dilihat dengan mata telanjang ialah telur ayam yang belum dibuahi. Akan tetapi, sebagian besar sel berdiameter antara 1 sampai 100 µm (0,001–0,1 mm) sehingga hanya bisa dilihat dengan mikroskop. Penemuan dan kajian awal tentang sel memperoleh kemajuan sejalan dengan penemuan dan penyempurnaan mikroskop pada abad ke-17. Robert Hooke pertama kali mendeskripsikan dan menamai sel pada tahun 1665 ketika ia mengamati suatu irisan gabus (kulit batang pohon ek) dengan mikroskop yang memiliki perbesaran 30 kali. Namun demikian, teori sel sebagai unit kehidupan baru dirumuskan hampir dua abad setelah itu oleh Matthias Schleiden dan Theodor Schwann. Selanjutnya, sel dikaji dalam cabang biologi yang disebut biologi sel.

sel batang retina


Sel batang (bahasa Inggris: rod cell) adalah Sel fotoreseptor di dalam retina yang dapat berfungsi pada kondisi cahaya yang redup. Sel batang berlawanan dengan sel kerucut. Pada umumnya terdapat sekitar 125 juta sel batang pada mata manusia. Sel ini lebih sensiriv dibandingkan dengan sel kerucut sehingga sel inilah yang bertanggung jawab terhadap penglihatan dalam gelap.


sel batang memiliki bentuk sedikit lebih lebar dari sel kerucut, namun keduanya memiliki struktur dasar yang sama. Bagian pigmen ada di sebelah luar, terletak di jaringan epitel membentuk homeostasis sel. Pada ujung jaringan epitel ini terdapat banyak cakram bertumpuk. Sel batang memiliki daerah pigmen visual yang luas, sehingga memiliki kemampuan menyerap cahaya dengan baik. Karena sel batang hanya memiliki satu jenis yang sensitiv terhadap cahaya, (sel kerucut memiliki tiga jenis pigmen atau lebih) sehingga sel batang tidak bisa membedakan warna.
Sensitivitas

Sel batang cukup sensitiv untuk merespon seberkas foton, dan sensitivitasnya kira-kira 100 kali dibanding sel kerucut.


Panjang gelombang responsivitas sel batang (kurva berwarna abu-abu) dibanding ketiga jenis sel kerucut
Sel batang juga bereaksi lebih lambat dibanding sel kerucut, rangsangan yang diterima akan di proses dalam waktu lebih dari 100 milidetik, sehingga walaupun sel batang lebih sensitif terhadap cahaya yang redup, namun sel batang kurang mampu mendeteksi objek yang bergerak cepat
Percobaan yang dilakukan George wald]] menunjukkan bahwa sel batang paling sensitif pada panjang gelombang cahaya sekitar 498 nm (hijau-biru), dan tidak sensitif pada panjang gelombang lebih dari 640 nm (merah). Hal ini yang menjelaskan efek purkinje, saat cahaya meredup menjadi temaram, sel batang mengambil alih, dan sebelum warna objek benar benar hilang, puncak sensitifitas penglihatan beralih ke puncak sensitifitas sel batang (hijau-biru).

Glikolisis

siklus krebs


Pengertian Siklus Krebs / Siklus Asam Sitrat - Asetil-KoA yang telah terbentuk akan menjadi bahan baku pada siklus selanjutnya, yaitu siklus Krebs. Oleh karena itu, Asetil Ko-A disebut senyawa intemediate atau senyawa antara. Siklus Krebs terjadi di matriks mitokondria dan disebut juga siklus asam trikarboksilat. Hal ini disebabkan siklus Krebs tersebut menghasilkan senyawa yang mempunyai 3 gugus karboksil, seperti asam sitrat dan asam isositrat. Asetil koenzim A hasil dekarboksilasi oksidatif memasuki matriks mitokondria untuk bergabung dengan asam oksaloasetat dalam siklus Krebs, membentuk asam sitrat. Demikian seterusnya, asam sitrat membentuk bermacam-macam zat dan akhirnya membentuk asam oksaloasetat lagi.

Berikut ini tahapan-tahapan dari 1 kali siklus Krebs:
Asetil Ko-A (2 atom C) menambahkan atom C pada oksaloasetat (4 atom C) sehingga dihasilkan asam sitrat (6 atom C).
Sitrat menjadi isositrat (6 atom C) dengan melepas H2O dan menerima H2O kembali.
Isositrat melepaskan CO2 sehingga terbentuk - ketoglutarat (5 atom C).
α - ketoglutarat melepaskan CO2. NAD+ sebagai akseptor atau penerima elektron) untuk membentuk NADH dan menghasilkan suksinil Ko-A (4 atom C).
Terjadi fosforilasi tingkat substrat pada pembentukan GTP (guanosin trifosfat) dan terbentuk suksinat (4 atom C).
Pembentukan fumarat (4 atom C) melalui pelepasan FADH2.
Fumarat terhidrolisis (mengikat 1 molekul H2O) sehingga membentuk malat (4 atom C).
Pembentukan oksaloasetat (4 atom C) melalui pelepasan NADH.
Nah, bagaimana? Apakah kalian sudah dapat mengerti tentang siklus Krebs? Kemudian, apa sajakah hasil akhir dari siklus krebs tersebut? Dengan mempelajari tahapan 1 siklus Krebs, kalian dapat menghitung hasil akhir dari siklus Krebs tersebut. Kalian sudah mengetahui bahwa satu siklus Krebs tersebut hanya untuk satu molekul piruvat saja.
Skema siklus Krebs
Gambar 1.1. Skema siklus Krebs
Sementara itu, hasil glikolisis menghasilkan 2 molekul piruvat (untuk 1 molekul glukosa). Oleh karena itu, hasil akhir total dari siklus Krebs tersebut adalah 2 kalinya. Dengan demikian, diperoleh hasil sebanyak 6 NADH, 2FADH2 dan 2ATP (ingat: jumlah ini untuk katabolisme setiap 1 molekul glukosa). Selanjutnya, apakah tahapan respirasi aerobik berakhir sampai siklus Krebs? Tidak, ada satu tahapan lagi dalam sistem respirasi sel yaitu sistem transportasi elektron

reaksi terang fotosintesis


Reaksi fotosintesis dirangkum sebagai berikut:

6CO2 + 12H2O + energy cahaya     –>     C6H12O6 + 6O2 + 6H2O

Oksigen yang dikeluarkan dari tumbuhan berasal dari air dan bukan CO2.  Kloroplas menguraikan air menjadi hidrogen dan oksigen.  Fotosintesis terdiri dari dua proses.  Tahap tersebut adalah reaksi terang dan siklus Calvin.

Reaksi terang merupakan tahap fotosintesis yang mengubah energi matahari menjadi energi kimia.  Kloroplas menyerap cahaya dan cahaya menggerakkan transfer elektron dan hidrogen ke penerima yaitu NADP+ (nikotinamida adenine dinukleotida fosfat).  Pada proses ini, air terurai.  Reaksi terang pada fotosintesis ini melepaskan O2.  Pada reaksi terang, tenaga matahari mereduksi NADP+ menjadi NADPH dengan menambahkan sepasang electron  bersama dengan nukleus hidrogen.  Pada reaksi terang juga terjadi fosforilasi yang mengubah ADP menjadi ATP.  Jadi energy cahaya diubah menjadi energi kimia dengan pembentukan NADPH: sumber dari elektron berenergi, dan ATP; energy sel yang serba guna.

Tahap kedua fotosintesis adalah siklus Calvin yang berawal dari pemasukan CO2 ke dalam molekul organik yang telah disiapkan di dalam kloroplas.  Proses ini disebut fiksasi karbon.  Siklus Calvin mereduksi karbon terfiksasi menjadi karbohidrat melalui penambahan elektron.  Energi untuk mereduksi berasal dari NADPH.  Siklus Calvin mengubah CO2 menjadi karbohidrat dengan menggunakan ATP hasil dari reaksi terang.  Siklus Calvin disebut juga reaksi gelap atau reaksi tak bergantung cahaya karena tidak memerlukan cahaya secara langsung.

Pada fotosintesis, cahaya tampak diserap oleh pigmen.  Pigmen yang berbeda menyerap panjang gelombang yang berbeda.  Klorofil a bukanlah satu-satunya pigmen yang penting dalam kloroplas.  Tetapi hanya klorofil a yang dapat berperan secara langsung dalam reaksi terang.  Pigmen lain dalam membrane tilakoid dapat menyerap cahaya dan mentransfer energinya ke klorofil a.  Salah satunya adalah klorofil b. Jika foton cahaya matahari diserap oleh klorofil b, energi kemudian disalurkan ke klorofil a yang beraksi seolah-olah klorofil inilah yang menyerap energi tersebut.

Dalam membran tilakoid, klorofil tersusun bersama protein dan molekul organik lainnya menjadi fotosistem.  Fotosistem memiliki kompleks antena yang terdiri dari klorofil a, klorofil b dan karotenoid.  Jumlah dan keragaman pigmen membuat fotosistem dapat menyerap spectrum yang lebih luas.  Saat molekul antena menyerap foton, energi disalurkan ke klorofl a yang terletak pada pusat reaksi.  Molekul yang bersama-sama menggunakan pusat reaksi dengan klorofil a adalah akseptor elektron primer.

Pada membran tilakoid terdapat fotosistem I dan fotosistem II.  Fotosistem I memiliki pusat klorofil P700 karena pigmen ini paling baik menyerap cahaya yang memiliki panjang gelombang 700 nm.  Pusat reaksi fotosistem II memiliki klorofil yang disebut P680 karena paling baik menyerap cahaya pada panjang gelombang 680 nm.  Adanya protein yang berbeda menjadi penyebab adanya perbedaan sifat penyerapan cahaya.


Aliran Elektron non-siklik

Aliran elektron non-siklik dimulai ketika fotosistem II menyerap cahaya , dan electron yang dieksitasi ke tingkat yang lebih tinggi dalam P680 diterima oleh akseptor electron primer.  Klorofil yang dioksidasi menjadi agen pengoksidasi yang sangat kuat.  Elektron diekstraksi dari air dan dikirimkan ke P680 menggantikan elektron yang keluar dari klorofil. Air diuraikan menjadi hidrogen dan oksigen. Elektron yang terfotoeksitasi mengalir dari akseptor elektron primer ke fotosistem I melalui rantai transport elektron yang terdiri dari satu pembawa elektron yaitu plastokinon (Pq), suatu kompleks yang terdiri atas dua sitokrom , dan protein yang mengandung tembaga yang disebut plastosianin (Pc). Elektron yang menuruni rantai, eksergoniknya berada ke tingkat energi yang lebih rendah dan digunakan oleh tilakoid untuk menghasilkan ATP.  Pmbentukan ATP disebut fosforilasi karena digerakkan oleh energi cahaya.

Elektron selanjutnya mencapai pusat P700 yang telah kehilangan elektronnya, karena energy cahaya menggerakkan electron dari P700 ke akseptor electron primer pada fotosistem I.  Selanjutnya electron ditransfer melalui transfer electron . disalurkan ke feredoksin (Fd).  NADP+ reduktase menyalurkan electron dari Fd ke NADP+.  NADP+ berubah menjadi NADPH.


Aliran Elektron siklik

Elektron yang terfotoeksitasi dapat melalui jalur khusus yaitu aliran electron siklik.  Aliran ini menggnakan fotosistem I saja.  Elektron kembali dari feredoksin ke kompleks sitokrom dank e klorofil P700.  NADPH tidak diproduksi tetapi menghasilkan ATP.  Proses pembentukan ATP ini disebut fosforilasi siklik.


Siklus Calvin

Siklus Calvin dibagi menjadi tiga tahap yaitu :

Fiksasi karbon.  Molekul CO2 diikat pada ribulosa bifosfat (RuBP) dengan bantuan RuBP karboksilase atau Rubisco.  Reaksi ini menghasilkan dua molekul 3-fosfogliserat.
Reduksi.  Tiap molekul 3-fosfogliserat menerima gugus fosfat baru dari ATP menghasilkan 1,3-difosfogliserat. Selanjutnya 1,3 difosfogliserat direduksi oleh sepasang electron dari NADPH menjadi gliseraldehid 3-fosfat (G3P).  G3P merupakan gula.  Setiap 3 molekul CO2 terdapat 6 molekul G3P, tetapi hanya 1 molekul G3P yang dihitung sebagai selisih perolehan karbohidrat. Satu molekul keluar siklus dan digunakan oleh tumbuhan, sedangkan 5 molekul didaur ulang untuk menghasilkan 3 molekul RuBP.
Regenerasi akseptor CO2.  Lima molekul G3P disusun ulang dalam langkah terakhir siklus Calvin menjadi 3 molekul RuBP yang siap menerima CO2 kembali.

Tumbuhan C4

Tumbuhan C4 memfiksasi karbon dengan membentuk senyawa berkarbon empat sebagai produknya.  Tergolong tumbuhan C4 yang penting dalam pertanian adalah tebu, jagung, dan famili rumput.  Dalam tumbuhan C4 terdapat dua jenis sel fotosintetik : sel seludang-berkas pembuluh dan sel mesofil.  Sel seludang berkas pembuluh tersusun menjadi kemasan yang padat di sekitar berkas pembuluh. Di antara seludang-berkas pembuluh dan epidermis daun terdapat sel mesofil.  Siklus Calvin terbatas pada kloroplas seludang-berkas pembuluh.  Siklus ini didahului oleh masuknya CO2 ke dalam senyawa organik dalam mesofil.

Tahap pertama adalah penambahan CO2 pada fosfoenolpiruvat (PEP) untuk membentuk oksaloasetat (memiliki empar karbon).  Enzim karboksilase menambahkan CO2 pada PEP.   Setelah memfiksasi CO2, sel mesofil mengirim keluar produk berkarbon empat ke sel seludang-berkas pembuluh melalui plasmodesmata.  Dalam seludang-berkas pembuluh, senyawa berkarbon empat melepaskan CO2 yang diasimilasi ulang ke dalam materi organik oleh rubisko dan siklus Calvin.

Sel mesofil tumbuhan C4 memompa CO2 ke dalam seludang-berkas pembuluh, mempertahankan konsentrasi CO2 dalam seludang-berkas pembuluh cukup tinggi agar rubisko dapat menerima CO2 bukan O2.  Fotosintesis C4 meminimumkan fotorespirasi dan meningkatkan produksi gula.

reaksi gelap fotosintesis


Reaksi Gelap Fotosintesis Siklus Calvin pada Tumbuhan - Pengertian reaksi gelap adalah reaksi tahap kedua dari fotosintesis. Disebut reaksi gelap karena reaksi ini tidak memerlukan cahaya. Reaksi gelap terjadi di dalam stroma kloroplas. Reaksi gelap pertama kali ditemukan oleh Malvin Calvin dan Andrew Benson. Oleh karena itu, reaksi gelap fotosintesis sering disebut siklus Calvin-Benson atau siklus Calvin. Siklus Calvin berlangsung dalam tiga tahap, yaitu fase fiksasi, fase reduksi, dan fase regenerasi. Pada fase fiksasi terjadi penambatan CO2 oleh ribulose bifosfat (Ribulose biphosphat = RuBP) menjadi 3-fosfogliserat (3- phosphoglycerate = PGA). Reaksi ini dikatalisis oleh enzim ribulose bifosfat karboksilase (Rubisco).


                        RuBP karboksilase (Rubisco)
CO2 + RuBP -------------------------------->  PGA

Pada fase reduksi diperlukan ATP dan ion H+ dari NADPH2 untuk mereduksi 3-fosfogliserat (PGA) menjadi 1,3- bifosfogliserat (PGAP) kemudian membentuk fosfogliseraldehid (glyceraldehyde-3-phosphat = PGAL atau G3P = glukosa 3-fosfat).



Pada fase regenerasi, terjadi pembentukan kembali RuBP dari PGAL atau G3P. Dengan terbentuknya RuBP, penambatan CO2 kembali berlangsung.




Secara ringkas reaksi gelap atau siklus Calvin dijelaskan dalam skema pada Gambar 1 berikut.


Gambar 1. Siklus Calvin Benson
Sudah jelaskah Anda tentang siklus Calvin? Jika belum, coba diskusikan kembali materi di atas dengan kelompok Anda atau mintalah penjelasan kepada teman Anda yang sudah paham tentang materi tersebut.

Kapan glukosa terbentuk? Setiap 6 atom karbon yang memasuki siklus Calvin sebagai CO2, 6 atom karbon
meninggalkan siklus sebagai 2 molekul PGAL atau G3P, kemudian digunakan dalam sintesis glukosa atau karbohidrat lain (perhatikan kembali siklus Calvin di atas). Reaksi endergonik antara 2 molekul G3P atau PGAL menghasilkan glukosa atau fruktosa. Pada beberapa tumbuhan, glukosa dan fruktosa bergabung membentuk sukrosa atau gula pada umumnya. Sukrosa dapat dipanen dari tanaman tebu atau bit. Selain itu, sel tumbuhan juga menggunakan glukosa untuk membentuk amilum atau selulosa.

Berdasarkan tipe pengikatan terhadap CO2 selama proses fotosintesis terdapat tiga jenis tumbuhan, yaitu tanaman C3, tanaman C4, dan tanaman CAM.

Sistem Klasifikasi Makhluk Hidup


Klasifikasi adalah pengelompokan aneka jenis hewan atau tumbuhan ke dalam kelompok tertentu. Pengelompokan ini disusun secara runut sesuai dengan tingkatannya (hierarkinya), yaitu mulai dari yang lebih kecil tingkatannya hingga ke tingkatan yang lebih besar. Ilmu yang mempelajari prinsip dan cara klasifikasi makhluk hidup disebut taksonomi atau sistematik.

Prinsip dan cara mengelompokkan makhluk hidup menurut ilmu taksonomi adalah dengan membentuk takson. Takson adalah kelompok makhluk hidup yang anggotanya memiliki banyak persamaan ciri. Takson dibentuk dengan jalan mencandra objek atau makhluk hidup yang diteliti dengan mencari persamaan ciri maupun perbedaan yang dapat diamati.

Sistem Klasifikasi makhluk hidup telah dikenal sejak zaman dahulu (Ancient Time, BC) . Ahli filosof Yunani, Aristotle (384-322 BC) mengelompokan makhluk hidup kedalam dua kelompok besar yaitu kelompok hewan dan kelompok tumbuhan, namun keberadaan organisme mikroskopis belum dikenal pada saat itu. Sistem klasifikasi makhluk hidup terus mengalami kemajuan seiring berkembangnya ilmu pengetahuan dan teknologi. Sistem klasifikasi makhluk hidup dikelompokan dalam satu-satuan kelompok besar yang disebut kingdom.

Perkembangan Klasifikasi

1. Sistem Klasifikasi Pra-Linnaeus

Sistem klasifikasi ini dilakukan dengan melihat kesamaan bentuk luar dari tubuh makhluk hidup (morfologi). Makhluk hidup pada masa ini dibedakan menjadi dua kelompok seperti konsep Aristoteles yang mengklasifikasikan makhluk hidup menjadi 2 yaitu tumbuhan dan hewan. Hewan-hewan yang memiliki bentuk tubuh yang sama dikelompokkan menjadi satu kelompok tersendiri. Selain itu hewan juga dikelompokkan berdasarkan kegunaannya masing-masing. Pengelompokan hewan didasarkan pada ciri-ciri lalu ditentukan macamnya dan diberikan nama sesuai dengan isyarat yang dimiliki. Proses-proses ini dilakukan tanpa kesadaran dan berlangsung dalam waktu yang sangat cepat. Pada masa pra-Linnaeus juga belum ada publikasi tentang klasifikasi hewan.

2. Sistem Klasifikasi 2 Kingdom

Kingdom Animalia (Dunia Hewan)
Kingdom Plantae (Dunia Tumbuhan)
Sistem ini dikembangkan oleh ilmuwan Swedia C. Linnaeus tahun 1735. Kelemahannya adalah penggolongan ini masih terlalu umum dan kurang spesifik sehingga terdapat beberapa makhluk hidup lainnya yang tidak dapat digolongkan dalam kedua kingdom ini. Kelebihan sistem ini pada saat itu adalah mampu menggolongkan dua kelompok besar mahkluk hidup di bumi berdasarkan karakter fisiknya yaitu tumbuhan dan hewan dan juga kedua kingdom ini merupakan kunci atau pengarah utama menuju model-model kingdom lainnya.

3. Sistem Klasifikasi 3 Kingdom

Kingdom Animalia (Dunia Hewan)
Kingdom Plantae (Dunia Tumbuhan)
Kingdom Protista (Organisme bersel satu dan organisme multiseluler sederhana)
Ketika makhluk hidup bersel satu ditemukan, temuan baru ini dipecah ke dalam dua kerajaan: yang dapat bergerak ke dalam filum Protozoa, sementara alga dan bakteri ke dalam divisi Thallophyta atau Protophyta. Namun ada beberapa makhluk yang dimasukkan ke dalam filum dan divisi, seperti alga yang dapat bergerak, Euglena, dan jamur lendir yang mirip amuba. Karena dasar inilah, Ernst Haeckel pada tahun 1866 menyarankan adanya kerajaan ketiga, yaitu Protista untuk menampung makhluk hidup yang tidak memiliki ciri klasifikasi yang jelas. Kerajaan ketiga in baru populer belakangan ini (kadang dengan sebutan Protoctista). Protista adalah organisme yang memiliki sifat-sifat tumbuhan dan hewan sekaligus.

Kelemahan sistem ini yaitu bakteri tidak dapat digolongkan ke dalam kingdom protista, karena bakteri adalah organisme mikroskopis yang tidak memiliki inti sel. Sehingga pengelompokan kingdom ini kurang sempurna. Kelebihan sistem ini adalah organisme mikroskopis bersel satu atau multiseluler sederhana dikelompokan kedalam kingdom tersendiri dan berbeda dari animalia atau plantae, penyebabnya karena secara fisiologis, morfologisnya, dan anatomi, kingdom protista memiliki perbedaan dari kedua kingdom lainnya.

4. Sistem Klasifikasi 4 Kingdom

Kingdom Animalia (Dunia Hewan)
Kingdom Plantae (Dunia Tumbuhan)
Kingdom Protista
Kingdom Monera·Kingdom Fungi (Dunia Jamur)
Ada dua tokoh yang mengklasifikasikan makhluk hidup menjadi sistem 4 kingdom yaitu Copeland dan Whittaker. Hanya saja dasar yang digunakan oleh keduanya berbedasehingga dihasilkan klasifikasi makhluk hidup yang berbeda pula. Copeland membagi menjadi empat Kingdom yaitu Monera, Protoctista, Metaphyta dan Metazoa. Monera adalah organisme yang belum memiliki membran inti dan membran organel sel atau bersifat prokariotik.

Berbeda dengan Protista/Protoctista yang bersifat Eukariotik. Metaphyta adalah tumbuhan yang mengalami masa perkembangan embrio, begitu juga Metazoa adalah kelompok hewan yang mengalami masa perkembangan embrio dalam siklus hidupnya. Sedangkan Whittakers membagi hewan menjadi beberapa kingdom: Animalia, Plantae, Fungi dan Protista.

Fungi dijadikan kingdom tersendiri karena fungi memiliki perbedaan dari tumbuhan. Fungi bukan organisme autotrof layaknya tumbuhan melainkan organisme yang heterotrof yaitu tidak dapat mensintesis makanannya sendiri. Jamur tidak mencernakan makanan seperti yang binatang lakukan, atau pun membuat makanan mereka sendiri seperti yang tumbuhan lakukan melainkan mereka mengeluarkan enzim pencernaan di sekitar makanan mereka dan kemudian menyerapnya (absorbsi)ke dalam sel.

5. Sistem Klasifikasi 5 Kingdom

Sistem ini dikembangkan oleh ahli Biologi Amerika Robert H. Whittaker tahun 1969 dengan mencirikan masing-masing kingdom sebagai berikut :

Monera : Prokariot, Autotrof dan Heterotrof, Uniseluler dan Multiseluler
Protista : Eukariot, Autotrof dan Heterotrof, Uniseluler dan Multiseluler
Fungi : Eukariot, Heterotrof, Uniseluler dan Multiseluler
Plantae : Eukariot, Autotrof, Multiseluler
Animalia : Eukariot, Heterotrof, Multiseluler
Kelebihan sistem ini adalah jamur digolongkan kedalam kingdom tersendiri karena Jamur tidak mencernakan makanan seperti yang hewan lakukan, atau pun membuat makanan mereka sendiri seperti yang tumbuhan lakukan melainkan mereka mengeluarkan enzim pencernaan di sekitar makanan mereka dan kemudian menyerapnya ke dalam sel. Begitu juga perbedaannya dengan monera jelas terlihat bahwa kingdom fungi merupakan jenis organisme eukariot bukan prokariot. Dengan kata lain kingdom ini melengkapi sistem klasifikasi kingdom sebelumny. Namun masih terdapat kelemahan dalam klasifikasi ini, yaitu belum mampu mendefinisikan kingdom monera secara tepat sehingga didalam kelompok kingdom monera sendiri masih memiliki perbedaan yang cukup signifikan baik dalam hal RNA polymerase, RNA sequences, Introns, membran lipid dan lainnya.

6. Sistem Klasifikasi 6 Kingdom

Kingdom Animalia (Dunia Hewan)
Kingdom Plantae (Dunia Tumbuhan)
Kingdom Protista
Kingdom Mycota (Dunia Jamur)
Kingdom Eubacteria
Kingdom Archaebacteria
Sistem ini dikembangkan oleh ahli Biologi Amerika Carl Woese 1977. Pengklasifikasian ini berawal dari ditemukannya golongan monera archaebacteria di samudera dalam yang memiliki perbedaan dengan kingdom monera lainnya (eubacteria). Analisis archaebacteria menunjukkan bahwa kelompok ini lebih menyerupai  eukariota dibanding saudaranya (prokariotik). Hal ini adalah salah satu alasan menagapa kingdom monera menjadi kingdom archaebacteria dan eubacteria. Namun bagi beberapa pakar ilmuwan sering menjadi pro dan kontra, karena kingdom monera merupakan kingdom yang sudah mencakup bakteri archae dan eubacteria sehingga menurut mereka tidak perlu di bagi lagi. Kelebihannya adalah mampu menjelaskan kingdom monera secara spesifik, sehingga memberikan informasi yang cukup signifikan bagi kingdom monera.

7. Sistem Klasifikasi 7 Kingdom

Kingdom Animalia (Dunia Hewan)
Kingdom Plantae (Dunia Tumbuhan)
Kingdom Protista (Protozoa)
Kingdom Chromista
Kingdom Eumycota
Kingdom Eubacteria
Kingdom Archaebacteria
Sistem ini diperkenalkan oleh ahli Cavalier-Smith tahun 1998. sistem ini dikembangkan dari sistem kingdom sebelumnya dan secara garis besar digolongkan dalam dua kelas utama prokariot dan eukariot (2 Empires, Chatton 1937) dari kedua golongan besar ini dibagi lagi, eukariot mencakup Animalia, Plantae, Protozoa (protista), Eumycota dan Chromista. Sedangkan golongan prokariot mencakup Eubacteria dan Archaebacteria.

Disini terdapat kingdom baru yaitu Chromista yang anggotanya merupakan bagian dari kingdom fungi dan protista yaitu Oomycota, Hyphochytriomycota, Bacillariophyta, Xanthophyta, Silicoflagellates, Chrysophyta, dan Phaeophyta. Golongan ini berbeda dari kingdom asalnya karena mereka meiliki klorofil a dan c, tidak menyimpan makanan sebagai kanji melainkan sebagai minyak dan umumnya menghasilkan sel dengan dua flagella yang berlainan. Karena sebagian kingdom mycota sudah digolongkan ke dalam kingdom chromista maka kingdom ini berubah menjadi kingdom eumycota. Kingdom protista lebih akrab dikenal sebagai kingdom protozoa.Klasifikasi system ini lebih sempurna dari kingdom sebelumnya.
Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | GreenGeeks Review